Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Insects ; 14(5)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37233082

RESUMEN

Pollination is crucial for oil palm yield, and its efficiency is influenced by multiple factors, including the effectiveness of Elaeidobius kamerunicus weevils as pollinators in Southeast Asia. Weevils transfer pollen between male and female flowers, leading to successful fertilization and fruit development, which contributes to higher oil palm yields and increased production of valuable oil. Understanding and conserving the weevil population is important for sustainable oil palm cultivation practices. The interaction between pollinators, including weevils, and environmental factors is complex, involving aspects such as pollinator behavior, abundance, diversity, and effectiveness, which are influenced by weather, landscape composition, and pesticide use. Understanding these interactions is critical for promoting sustainable pollination practices, including effective pest management and maintaining optimal pollinator populations. This review discusses various abiotic and biotic factors that affect pollination and pollinators in oil palm plantations, with a particular focus on weevils as primary pollinators. Factors such as rainfall, humidity, oil palm species, temperature, endogamy, parasitic nematodes, insecticides, predators, and proximity to natural forests can impact the weevil population. Further research is recommended to fill knowledge gaps and promote sustainable pollination practices in the oil palm industry.

2.
Plants (Basel) ; 12(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37176828

RESUMEN

Plants use a variety of secondary metabolites to defend themselves against herbivore insects. Methyl salicylate (MeSA) is a natural plant-derived compound that has been used as a plant defence elicitor and a herbivore repellent on several crop plants. The aim of this study was to investigate the effect of MeSA treatment of Brassica rapa subsp. chinensis ('Hanakan' pak choi) on its interactions with peach potato aphids, Myzus persicae, and their natural enemy, Diaeretiella rapae. For this, we selected two concentrations of MeSA (75 mg/L and 100 mg/L). Our results showed that aphid performance was significantly reduced on plants treated with MeSA (100 mg/L). In a cage bioassay, the MeSA (100 mg/L)-treated plants showed lower adult survival and larviposition. Similarly, the MeSA (100 mg/L)-treated plants had a significantly lower aphid settlement in a settlement bioassay. In contrast, the M. persicae aphids did not show any significant difference between the MeSA (75 mg/L)-treated and control plants. In a parasitoid foraging bioassay, the parasitoid D. rapae also did not show any significant difference in the time spent on MeSA-treated and control plants. A volatile analysis showed that the MeSA treatment induced a significant change in volatile emissions, as high numbers of volatile compounds were detected from the MeSA-treated plants. Our results showed that MeSA has potential to induce defence in Brassica against M. persicae and can be utilised in developing sustainable approaches for the management of peach potato aphids.

3.
Mol Biotechnol ; 59(7): 271-283, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28573450

RESUMEN

Coptotermes curvignathus is a termite that, owing to its ability to digest living trees, serves as a gold mine for robust industrial enzymes. This unique characteristic reflects the presence of very efficient hydrolytic enzyme systems including cellulases. Transcriptomic analyses of the gut of C. curvignathus revealed that carbohydrate-active enzymes (CAZy) were encoded by 3254 transcripts and that included 69 transcripts encoding glycoside hydrolase family 7 (GHF7) enzymes. Since GHF7 enzymes are useful to the biomass conversion industry, a gene encoding for a GHF7 enzyme (Gh1254) was synthesized, sub-cloned and expressed in the methylotrophic yeast Pichia pastoris. Expressed GH1254 had an apparent molecular mass of 42 kDa, but purification was hampered by its low expression levels in shaken flasks. To obtain more of the enzyme, GH1254 was produced in a bioreactor that resulted in a fourfold increase in crude enzyme levels. The purified enzyme was active towards soluble synthetic substrates such as 4-methylumbelliferyl-ß-D-cellobioside, 4-nitrophenyl-ß-D-cellobioside and 4-nitrophenyl-ß-D-lactoside but was non-hydrolytic towards Avicel or carboxymethyl cellulose. GH1254 catalyzed optimally at 35 °C and maintained 70% of its activity at 25 °C. This enzyme is thus potentially useful in food industries employing low-temperature conditions.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/genética , Glicósido Hidrolasas/genética , Isópteros/microbiología , Animales , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Técnicas de Cultivo Celular por Lotes , Reactores Biológicos/microbiología , Clonación Molecular , Estabilidad de Enzimas , Microbioma Gastrointestinal , Perfilación de la Expresión Génica , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Filogenia , Pichia/genética , Pichia/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...